Synergistic proinflammatory responses induced by polymicrobial colonization of epithelial surfaces.
نویسندگان
چکیده
The epithelial surfaces of the upper respiratory tract are continuously exposed to a wide variety of commensal microorganisms. In addition to acting as a physical barrier, epithelial cells respond to specific microbial products with the generation of signals, such as cytokines, that trigger inflammation. Because they are common components of the nasopharyngeal flora that share the potential to cause disease, we investigated the effects of Haemophilus influenzae and Streptococcus pneumoniae, alone and in combination, on human respiratory epithelial cells in culture and in a murine model of nasopharyngeal colonization. Exposure of A549 or Detroit 562 epithelial cells to both S. pneumoniae and H. influenzae led to a synergistic increase in production of IL-8, the major neutrophil chemokine in the airway, through an NF-kappaB-dependent mechanism. Likewise, nasal cocolonization of mice caused a synergistic rise in local production of macrophage inflammatory protein 2 in nasal lavage fluid and subsequent recruitment of neutrophils. This synergistic effect depended on production of the pore-forming cytolytic toxin, pneumolysin, by S. pneumoniae and activation of host p38 mitogen-activated protein kinase. Although both H. influenzae and S. pneumoniae have ligands for Toll-like receptors (TLRs) TLR2 and TLR4, synergistic activation was TLR2- and TLR4-independent. Thus, epithelial surfaces are capable of amplifying proinflammatory responses during concurrent stimulation by multiple microbial species. These synergistic responses, demonstrated both in vitro and in vivo, may contribute to inflammation of heavily colonized mucosal barriers.
منابع مشابه
Staphylococcus aureus Inhibits IL-8 Responses Induced by Pseudomonas aeruginosa in Airway Epithelial Cells
Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) are major respiratory pathogens and can concurrently colonize the airways of patients with chronic obstructive diseases, such as cystic fibrosis (CF). Airway epithelial cell signalling is critical to the activation of innate immune responses. In the setting of polymicrobial colonization or infection of the respiratory tract, how epithel...
متن کاملInduction of indoleamine 2,3-dioxygenase by uropathogenic bacteria attenuates innate responses to epithelial infection.
Uropathogenic Escherichia coli (UPEC) are the chief cause of urinary tract infections. Although neutrophilic inflammation is a hallmark of disease, previous data indicate that UPEC promotes local dampening of host innate immune responses. Here, we show that UPEC attenuates innate responses to epithelial infection by inducing expression of indoleamine 2,3-dioxygenase (IDO), a host enzyme with pr...
متن کاملThe Salmonella typhimurium flagellar basal body protein FliE is required for flagellin production and to induce a proinflammatory response in epithelial cells.
During apical colonization by Salmonella typhimurium, intestinal epithelial cells orchestrate a proinflammatory response that involves secretion of chemoattractants, predominantly interleukin-8, which coordinate neutrophil trans-epithelial migration at the site of infection. This host-pathogen interaction requires several S. typhimurium genes. To identify novel genes that participate in this pa...
متن کاملThe Role of Innate Immune Responses in the Outcome of Interspecies Competition for Colonization of Mucosal Surfaces
Since mucosal surfaces may be simultaneously colonized by multiple species, the success of an organism may be determined by its ability to compete with co-inhabitants of its niche. To explore the contribution of host factors to polymicrobial competition, a murine model was used to study the initiation of colonization by Haemophilus influenzae and Streptococcus pneumoniae. Both bacterial species...
متن کاملIntestinal Enterococcus faecium colonization improves host defense during polymicrobial peritonitis.
BACKGROUND Vancomycin-resistant (VR) Enterococcus faecium is increasingly found to colonize and infect hospitalized patients. Enterococci are frequently isolated from polymicrobial infections originating from the intestines. The impact of VR E. faecium on these infections and vice versa is not clear. METHODS Mice were intestinally colonized with VR E. faecium during oral vancomycin treatment;...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 9 شماره
صفحات -
تاریخ انتشار 2005